، جلد ۲۲، شماره ۳، صفحات ۹۵-۱۰۴

عنوان فارسی طبقه‌بندی تصور حرکت دست راست و چپ با استفاده از روش‌های یادگیری عمیق از روی سیگنال‌های الکتروانسفالوگرافی و طیف‌سنجی مادون قرمز
چکیده فارسی مقاله مقدمه: در این مقاله یک واسط مغز و رایانه برای طبقه­‌بندی تصور حرکت دست راست و چپ با استفاده از روش یادگیری عمیق از روی سیگنال­‌های مغزی ارائه شده است. واسط مغز و رایانه به منظور دستیابی به یک راه ارتباطی بین مغز و یک دستگاه خارجی برای بیمارانی مانند اسکلروز جانبی آمیوتروفیک طراحی می­‌شود به گونه­‌ای که کاربر بدون هیچ­گونه استفاده از اندام­‌های بدن و با استفاده از مغز خود دستگاه بیرونی از جمله یک ویلچر را کنترل کند. روش کار: سیگنال الکتروانسفالوگرافی و طیف‌­سنجی نور مادون قرمز از 29 فرد سالم ثبت شد و پیش پردازش سیگنال­‌ها به منظور حذف نویز انجام گرفت. سپس سیگنال­‌ها به صورت جداگانه و به صورت ترکیبی به تصاویر دو بعدی زمان فرکانس اسکیلوگرام با استفاده از تبدیل موجک پیوسته تبدیل شدند و تصاویر هر ناحیه از مغز به صورت جداگانه و ترکیبی به شبکه عصبی کانولوشنی از پیش آموزش دیده ResNet 18 برای استخراج ویژگی و طبقه­‌بندی وارد شدند. یافته‌­ها: نتایج به دست آمده از شبکه عصبی کانولوشنی از پیش آموزش دیده ResNet18 برای تصاویر اسکیلوگرام در نواحی Frontal-Central, Central-Parietal مغز برای سیگنال الکتروانسفالوگرافی 88 درصد، برای تصاویر اسکیلوگرام سیگنال طیف­‌سنجی نور مادون قرمز 85 درصد و برای مجموع تصاویر اسکیلوگرام، دقت 90 درصد به دست آمد. نتیجه­‌گیری: ترکیب تصاویر اسکیلوگرام سیگنال­‌های مغزی و روش یادگیری عمیق استفاده شده منجر به بهبود دقت طبقه­‌بندی تصور حرکت دست راست و چپ نسبت به مطالعات گذشته شد.
کلیدواژه‌های فارسی مقاله رابط مغز و رایانه، الکتروانسفالوگرافی، طیف­‌نگاری نور نزدیک مادون قرمز، شبکه عصبی کانولوشنی

عنوان انگلیسی Classification of right and left-hand motor imagery using deep learning inelectroencephalography and near-infrared spectroscopy
چکیده انگلیسی مقاله Introduction: In this paper, a hybrid brain-computer interface for classification of right and left hand motor imagery using deep learning method is presented to increase accuracy and performance. A hybrid brain-computer interface is designed to achieve a way of communicating between the brain and an external device for patients such as amyotrophic lateral sclerosis. So, the user can control the external device such as a Wheelchair without using any organs of the body and only using brain. Methods: Two electroencephalographic and near-infrared spectroscopy signals were recorded from 29 healthy men and women and pre-processing of the signals was done to eliminate noise. The wavelet transform was used to obtain the scalogram as two-dimensional images for both of the signals, and images were inserted separately from each region of brain and merge region into the pre-trained convolutional neural network to extract feature, classification, and prediction of left and right hand motor imagery. Results: The results for combination of scalogram images of Frontal-Central and Central-Parietal regions in electroencephalographic signal reached 88%, for Near infrared light spectroscopy reached 85% and for merge of two scalogram images reached 90%. Conclusion: The combination of scalogram images and the deep learning method used in this study reached significant improvement in the prediction accuracy of right and left hand motor imagery for wheelchair motion control.
کلیدواژه‌های انگلیسی مقاله Brain-Computer Interface, Electroencephalography, Near Infrared Light Spectroscopy, Convolutional Neural Network

نویسندگان مقاله حمید ابراهیمی | Hamid Ebrahimi
Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
گروه مهندسی پزشکی، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران

احمد شالباف | Ahmad Shalbaf
Department of Biomedical Engineering and Medical Physics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
گروه مهندسی و فیزیک پزشکی، دانشکده پزشکی، دانشگاه علوم پزشکی شهید بهشتی، تهران، ایران

نادر جعفرنیا دابانلو | Nader Jafarnia Dabanloo
Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
گروه مهندسی پزشکی، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران


نشانی اینترنتی http://icssjournal.ir/browse.php?a_code=A-10-898-1&slc_lang=fa&sid=1
فایل مقاله فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده fa
موضوعات مقاله منتشر شده مدل سازی شناختی، پردازش سیگنال و تصویربرداری مغز
نوع مقاله منتشر شده پژوهشی اصیل
برگشت به: صفحه اول پایگاه   |   نسخه مرتبط   |   نشریه مرتبط   |   فهرست نشریات