|
Health in Emergencies and Disasters Quarterly، جلد ۷، شماره ۴، صفحات ۰-۰
|
|
|
عنوان فارسی |
|
|
چکیده فارسی مقاله |
|
|
کلیدواژههای فارسی مقاله |
|
|
عنوان انگلیسی |
Using Methods Based on Neural Networks to Predict and Manage Diseases (A Case Study of Forecasting the Trend of Corona Disease) |
|
چکیده انگلیسی مقاله |
Aim and background: Forecasting methods are used in various fields; one of the most important fields is the field of health systems. This study aimed to use the Artificial Neural Network (ANN) method in forecasting Corona patients in Iran. Method: The present study is descriptive and analytical of a comparative type that uses past information to predict the future, the time series of Corona infected patients in Iran was between May 2020 and May 2021. The forecasting accuracy index was the mean absolute percentage error (MAPE), and the forecasting method based on ANN was used to forecast the values for June 2021. Input, output, and middle layer were used in designing the Neural Network (NN), and the training of the NN was based on the Levenberg-Marquardt algorithm. Findings: The mean absolute value of the designed NN error in forecasting the trend of Corona disease is 6%. ANN can forecast the course of the disease with 94% accuracy. Conclusion: ANN has good accuracy in forecasting the process of Corona disease. Furthermore, the outputs of this model can be used as a basis for decisions. |
|
کلیدواژههای انگلیسی مقاله |
Corona, Forecast, Artificial neural network, Time series |
|
نویسندگان مقاله |
| Nabi Omidi Department of Management, Payam Noor University, Tehran, Iran.
| Mohammad Reza Omidi Department of Industrial Engineering, Payam Noor University, Tehran, Iran.
|
|
نشانی اینترنتی |
http://hdq.uswr.ac.ir/browse.php?a_code=A-10-222-14&slc_lang=fa&sid=1 |
فایل مقاله |
فایلی برای مقاله ذخیره نشده است |
کد مقاله (doi) |
|
زبان مقاله منتشر شده |
fa |
موضوعات مقاله منتشر شده |
عمومی |
نوع مقاله منتشر شده |
پژوهشی |
|
|
برگشت به:
صفحه اول پایگاه |
نسخه مرتبط |
نشریه مرتبط |
فهرست نشریات
|