|
Basic and Clinical Neuroscience، جلد ۱۵، شماره ۳، صفحات ۳۹۳-۴۰۲
|
|
|
عنوان فارسی |
|
|
چکیده فارسی مقاله |
|
|
کلیدواژههای فارسی مقاله |
|
|
عنوان انگلیسی |
Feature Extraction With Stacked Autoencoders for EEG Channel Reduction in Emotion Recognition |
|
چکیده انگلیسی مقاله |
Introduction: Emotion recognition by electroencephalogram (EEG) signals is one of the complex methods because the extraction and recognition of the features hidden in the signal are sophisticated and require a significant number of EEG channels. Presenting a method for feature analysis and an algorithm for reducing the number of EEG channels fulfills the need for research in this field. Methods: Accordingly, this study investigates the possibility of utilizing deep learning to reduce the number of channels while maintaining the quality of the EEG signal. A stacked autoencoder network extracts optimal features for emotion classification in valence and arousal dimensions. Autoencoder networks can extract complex features to provide linear and non- linear features which are a good representative of the signal. Results: The accuracy of a conventional emotion recognition classifier (support vector machine) using features extracted from SAEs was obtained at 75.7% for valence and 74.4% for arousal dimensions, respectively. Conclusion: Further analysis also illustrates that valence dimension detection with reduced EEG channels has a different composition of EEG channels compared to the arousal dimension. In addition, the number of channels is reduced from 32 to 12, which is an excellent development for designing a small-size EEG device by applying these optimal features. |
|
کلیدواژههای انگلیسی مقاله |
Deep learning, Stacked auto-encoder, Channel reduction, Electroencephalogram (EEG) analysis, Emotion |
|
نویسندگان مقاله |
| Elnaz Vafaei Department of Biomedical Engineering, Faculty of Medical Sciences and Technologies, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| Fereidoun Nowshiravan Rahatabad Department of Biomedical Engineering, Faculty of Medical Sciences and Technologies, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| Seyed Kamaledin Setarehdan School of Electrical and Computer Engineering, University of Tehran, Tehran, Iran.
| Parviz Azadfallah Faculty of Humanities, Tarbiat Modares University, Tehran, Iran.
|
|
نشانی اینترنتی |
http://bcn.iums.ac.ir/browse.php?a_code=A-10-5138-2&slc_lang=en&sid=1 |
فایل مقاله |
فایلی برای مقاله ذخیره نشده است |
کد مقاله (doi) |
|
زبان مقاله منتشر شده |
en |
موضوعات مقاله منتشر شده |
Cognitive Neuroscience |
نوع مقاله منتشر شده |
Original |
|
|
برگشت به:
صفحه اول پایگاه |
نسخه مرتبط |
نشریه مرتبط |
فهرست نشریات
|