Basic and Clinical Neuroscience، جلد ۱۵، شماره ۳، صفحات ۳۹۳-۴۰۲

عنوان فارسی
چکیده فارسی مقاله
کلیدواژه‌های فارسی مقاله

عنوان انگلیسی Feature Extraction With Stacked Autoencoders for EEG Channel Reduction in Emotion Recognition
چکیده انگلیسی مقاله
Introduction: Emotion recognition by electroencephalogram (EEG) signals is one of the complex methods because the extraction and recognition of the features hidden in the signal are sophisticated and require a significant number of EEG channels. Presenting a method for feature analysis and an algorithm for reducing the number of EEG channels fulfills the need for research in this field.
Methods: Accordingly, this study investigates the possibility of utilizing deep learning to reduce the number of channels while maintaining the quality of the EEG signal. A stacked autoencoder network extracts optimal features for emotion classification in valence and arousal dimensions. Autoencoder networks can extract complex features to provide linear and non- linear features which are a good representative of the signal.
Results: The accuracy of a conventional emotion recognition classifier (support vector machine) using features extracted from SAEs was obtained at 75.7% for valence and 74.4% for arousal dimensions, respectively.
Conclusion: Further analysis also illustrates that valence dimension detection with reduced EEG channels has a different composition of EEG channels compared to the arousal dimension. In addition, the number of channels is reduced from 32 to 12, which is an excellent development for designing a small-size EEG device by applying these optimal features.
کلیدواژه‌های انگلیسی مقاله Deep learning, Stacked auto-encoder, Channel reduction, Electroencephalogram (EEG) analysis, Emotion

نویسندگان مقاله | Elnaz Vafaei
Department of Biomedical Engineering, Faculty of Medical Sciences and Technologies​, Science and Research Branch, Islamic Azad University, Tehran, Iran.


| Fereidoun Nowshiravan Rahatabad
Department of Biomedical Engineering, Faculty of Medical Sciences and Technologies​, Science and Research Branch, Islamic Azad University, Tehran, Iran.


| Seyed Kamaledin Setarehdan
School of Electrical and Computer Engineering, University of Tehran, Tehran, Iran.


| Parviz Azadfallah
Faculty of Humanities, Tarbiat Modares University, Tehran, Iran.



نشانی اینترنتی http://bcn.iums.ac.ir/browse.php?a_code=A-10-5138-2&slc_lang=en&sid=1
فایل مقاله فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده en
موضوعات مقاله منتشر شده Cognitive Neuroscience
نوع مقاله منتشر شده Original
برگشت به: صفحه اول پایگاه   |   نسخه مرتبط   |   نشریه مرتبط   |   فهرست نشریات